Perspectives on Nuclear Structure and Scattering with the Ab Initio No-Core Shell Model

Published in JPS Conference Proceedings, 2018

DOI: 10.7566/JPSCP.23.012001 | arXiv: 1804.10995
Recommended citation: J. P. Vary, P. Maris, P. J. Fasano, and M. A. Caprio, JPS Conf. Proc. 23, 012001 (2018) (download)

Nuclear structure and reaction theory are undergoing a major renaissance with advances in many-body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD), the advent of high performance computing, and improved computational algorithms. Predictive power, with well-quantified uncertainty, is emerging from non-perturbative approaches along with the potential for new discoveries such as predicting nuclear phenomena before they are measured. We present an overview of some recent developments and discuss challenges that lie ahead. Our focus is on explorations of alternative truncation schemes in the harmonic oscillator basis, of which our Japanese–United States collaborative work on the No-Core Monte-Carlo Shell Model is an example. Collaborations with Professor Takaharu Otsuka and his group have been instrumental in these developments.