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Nuclear structure and reaction theory are undergoing a major renaissance with advances in many-

body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD),

the advent of high performance computing, and improved computational algorithms. Predictive

power, with well-quantified uncertainty, is emerging from non-perturbative approaches along with

the potential for new discoveries such as predicting nuclear phenomena before they are measured.

We present an overview of some recent developments and discuss challenges that lie ahead. Our

focus is on explorations of alternative truncation schemes in the harmonic oscillator basis, of which

our Japanese–United States collaborative work on the No-Core Monte-Carlo Shell Model is an ex-

ample. Collaborations with Professor Takaharu Otsuka and his group have been instrumental in these

developments.

KEYWORDS: No-Core Shell Model, Monte-Carlo methods, Truncation methods, JISP16,

Daejeon16

1. Introduction

With continuing advances in Leadership-Class computing and plans for further developments

leading to Exascale systems (defined as having capabilities for 1018 floating-point operations per

second (flops)), computational scientists are developing quantum many-body approaches that por-

tend a new era of research and discovery in physics as well as in other disciplines. In particular, the

nuclear physics quantum many-body problem presents unique challenges that include the need to

simultaneously develop (1) strong inter-nucleon interactions with ties to QCD in order to control the

concomitant freedoms; (2) non-perturbative many-body methods that respect all the underlying sym-

metries; and (3) new algorithms that prove efficient in solving the quantum many-body problem on

Leadership-Class supercomputers. This triad of forefront requirements impels multi-disciplinary col-

laborations that include theoretical physicists, applied mathematicians and computer scientists. These

requirements also foster international collaborations, such as the Japan–United States collaboration,

that can catalyze and incubate new ideas while sharing the workload among the participating teams.

While the physics goals for computational nuclear structure and reactions may seem obvious —

i.e., retaining predictive power and quantifying the uncertainties — the opportunities and challenges

presented with the continuing rapid development of supercomputer architectures are less obvious to

the broader community. Simply put, with the need to develop and apply fully microscopic approaches

to heavier nuclei as well as the need to include multi-nucleon interactions and the coupling to the

continuum, even Exascale computers will be insufficient to meet all our plans. We therefore must also

work to develop truncation schemes that reduce the computational burden without loss of fidelity to

the underlying theory. In this work, we will focus on the second part of the triad mentioned above —

the development of non-perturbative many-body methods that respect the underlying symmetries.
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2. Ab Initio No-Core Monte Carlo Shell Model

Several years ago, teams of theorists from Japan and the United States initiated a joint research

program aimed at benchmarking the No-Core Monte Carlo Shell Model (NC-MCSM) with the No-

Core Shell Model (NCSM) using the same realistic interactions to define the nuclear Hamiltonian.

This led to a series of projects [1–8] that provided results for light nuclei while developing improved

methods for both approaches. We investigated light nuclei up through A = 12 with both approaches

and compared their predictions for the ground state energies.

In order to provide a perspective on this overview of benchmark results as well as some ex-

ploratory work in the next section, we will focus here on the similarities and differences in the Hamil-

tonian basis spaces in the different approaches. Both methods are applied within a single-particle

harmonic oscillator (HO) basis, and in both methods the basis includes single-particle states up to a

finite number of HO shells designated by Nshell = 1 + 2 n + l, where n is the radial quantum number

and l is the orbital angular momentum quantum number. Thus we count the 0s shell as the first shell.

With a finite number of single-particle states, the most general basis for a many-body problem

contains all possible many-body states (configurations) that can be constructed from these single-

particle states, limited only by symmetry constraints. Diagonalizing the Hamiltonian in such a basis

that contains all possible configurations for a given single-particle basis is referred to as an Full Con-

figuration Interaction (FCI) calculation, and is considered the ’gold standard’ in quantum chemistry.

However, the (naive) basis size D of an FCI calculation grows like

D =

(

Nsp

Z

) (

Nsp

N

)

for an A-body calculation with Z protons, N neutrons, and Nsp single-particle states. With only four

HO shells (Nshell = 4) we have Nsp = 40 and the FCI basis size for 12C is of the order of 1016. Even

after applying symmetry constraints, that will still be several orders of magnitude beyond what can be

diagonalized on current Leadership-Class computing systems. In addition, Nshell = 4 is not actually

sufficient for converging a calculation for 12C, as can be seen from Fig. 2 below. Hence the need to

further truncate the many-body basis.

The NCSM uses a many-body basis truncation defined by Nmax, the number of HO quanta

summed over all nucleons above the lowest possible number of quanta for that nucleus [9]. Such

a truncation scheme includes configurations with e.g. one nucleon in a highly excited HO state and

all others in the lowest HO states, as well as configurations in which several nucleons (or even all

nucleons if Nmax ≥ A) are excited by one quantum. When the NCSM results are extrapolated to the

infinite matrix limit, we refer to the results as obtained in the No-Core Full Configuration (NCFC)

method [10]. In addition to drastically reducing the basis size compared to an FCI calculation with

the same highest single-particle HO state, this particular truncation also leads to an exact factoriza-

tion of the center-of-mass motion and the intrinsic motion of the self-bound nuclei [11–13] — and

ultimately, it is the intrinsic wavefunction that is required for reaction calculations [14, 15].

In the NC-MCSM, the many-body basis states are selected from the underlying FCI basis defined

by a single-particle truncation parameter Nshell. It is a generalization of the Monte Carlo Shell Model

(MCSM), in which many-body states are constructed from linear combinations of non-orthogonal

angular-momentum and parity projected deformed Slater determinants. (For a review on the MCSM,

see Ref. [16].) With increasing dimension of the Monte Carlo basis space, the ground state energy of a

NC-MCSM calculation converges from above to the corresponding FCI value. The energy, therefore,

always gives the variational upper bound for the exact ground state energy. Typically only a few

hundred Monte Carlo basis states are kept, though the underlying FCI basis can be of the order of

1020. If needed, the ground state energy (and other observables) can be extrapolated by the energy

variance method [2].
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Fig. 1. (Color online) Overview of the bases covered with the NC-MCSM and NCSM methods for the case

of 12C (adapted from Ref. [2]).

Figure 1 sketches the topography of many-body bases adopted in the different methods: the

NC-MCSM (and also the FCI method) and the NCSM method (with extrapolation for the NCFC

method). This illustrates the different regions of the single-particle space emphasized in the different

approaches. Of course, the full (infinite dimensional) space is covered with increasing either Nshell or

Nmax and it becomes a practical issue of the respective rates of convergence.

One of the advantages offered by the NC-MCSM approach is its computational scaling with

increasing number of nucleons A. We presented a study of the advantageous scaling properties of

the NC-MCSM in Ref. [2] where we found that the rate of increased demand on computational

resources (for increasing A at fixed Nshell) is orders of magnitude slower than for the NCSM (for

increasing A at fixed Nmax). The question then turns to the adequacy of extrapolation techniques

for each method and the resulting quantified uncertainties. These issues have been addressed in our

subsequent efforts [5–8].

Note that the rate of convergence depends on the observable so each method is likely to have

its advantages for certain observables. One may imagine that, qualitatively, the NC-MCSM/FCI ap-

proach is advantageous for observables dominated by contributions from multiparticle correlations

in higher basis configurations while the NCSM/NCFC favors observables that are sensitive to short-

range nucleon-nucleon (NN) correlations, though this is only a rough picture.

In Fig. 2, we present recent benchmarks of the ground state energies of several light nuclei using

the JISP16 NN interaction [17]. We selected this interaction since it produced a high-quality descrip-

tion of the NN scattering data and was known to provide a good description of the properties of light

nuclei up to about A = 12 [18, 19]. For the purposes of our benchmark we neglected the Coulomb

interaction between the protons. We find that the NC-MCSM results with energy variance extrapola-

tion are nearly identical with the FCI results. The differences between the extrapolated NC-MCSM

results and the NCFC results provide a measure of the need for increasing Nshell. Fortunately, addi-
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Figure 1. Comparisons of the energies between the MCSM and FCI along with the fully converged NCFC results

where available. The NCFC result for the 10B(1 ) state has a large uncertainty indicated by the grey band. The

MCSM (FCI) results are shown as the solid (dotted) lines that nearly coincide where both are available. The

extrapolated MCSM results are illustrated by bands. From top to bottom, the truncation of the basis space is

shell 2 (red), 3 (green), 4 (blue), and 5 (purple). Note that the MCSM results are extrapolated by the energy

variance with second-order polynomials. Also note that some results in shell 4 and 5 were obtained only with

MCSM.

4 Summary

By exploiting the recent development in the MCSM algorithm, no-core calculations with the MCSM

algorithm can be achieved on massively parallel supercomputers. From the benchmark calculations,

the observables give good agreement between the MCSM and FCI results in the -shell nuclei. The

shell 5 results reveal the onset of systematic convergence pattern. Further work is needed to

investigate the extrapolation to the infinite basis space in the shell truncation.
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Fig. 2. (Color online) Comparisons of the energies between the NC-MCSM and FCI along with the fully

converged NCFC results where available. The NCFC result for the 10B(1+) state has a large uncertainty indi-

cated by the grey band. The NC-MCSM (FCI) results are shown as the solid (dotted) lines. The extrapolated

NC-MCSM results are illustrated by colored bands. The NC-MCSM results, with extrapolation to their full

Nshell basis [7], nearly coincide with the FCI results. From top to bottom, the truncation of the basis is Nshell =

2 (red), 3 (green), 4 (blue), and 5 (purple). Note that some results with Nshell = 4 and 5 were obtained only with

the NC-MCSM (adapted from Ref. [7]).

tional improvements to the NC-MCSM methods are under development and larger Nshell values are

already achievable [7].

In order to understand better the benchmark results, it is helpful to have a comparison of con-

vergence versus many-body basis size rather than by comparing results directly between an FCI

truncation and an Nmax truncation. In Fig. 3, we present comparisons of the convergence rates for

the ground states of 4He and 6Li as a function of the many-body basis size using the FCI truncation

and the Nmax truncation schemes [20]). Both truncations approach the exact answer from above in

concert with the variational property of these approaches. Clearly, the Nmax truncation provides faster

convergence as a function of the dimensionality. One should keep in mind, however, the discussion

above concerning the very different computational scaling properties with increasing A of the NC-

MCSM and the NCSM/NCFC approaches. Good computational scaling with increasing A becomes

overwhelmingly more important at sufficiently large A.

3. No-Core Shell Model with Alternative Truncation Schemes

When we compare the FCI and the NCSM results above, we are comparing different truncations

of the many-body basis formed with HO single-particle states. It is natural to investigate whether

alternative truncation schemes are valuable in that they could provide better converged results with

comparable demand on computational resources. For example, we could examine alternatives to trun-
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nected by solid lines. FCI results with Nshell truncation are connected by dotted lines. Both methods appear to

converge from above, in accord with the variational principle, to the extrapolated NCFC result (adapted from

Ref. [20]).

cating on the sum of the number of HO quanta in a many-body basis configuration [21]. Instead, we

could also apply specific weights to each single-particle orbital, characterized by n, l, and j, and

truncate the basis based on the sum of these assigned weights in a many-body basis configuration.

In this approach, the Nmax truncation of a conventional NCSM calculation is recovered by choosing

the weights to be (2 n + l). Furthermore, there is no reason for the underlying spatial single-particle

wavefunctions to be HO wavefunctions. Indeed, alternative single-particle basis functions such as the

Laguerre functions [13, 22, 23] and the natural orbital basis [24] do both provide a modest improve-

ment of the convergence rates.

Here we explore possible improvements when we simply use W = (α n + β l) but retain the HO

single-particle basis. The coefficients α and β define a weight W for each orbital and the many-body

basis is truncated by a cutoff in the sum over all nucleons of these weights for the orbitals in a many-

body basis configuration

A
∑

i=1

Wi ≤ Wmax .

One can easily see that varying the coefficients α and β allows a tradeoff between radial and orbital

basis functions. We will examine only the ground state energies and root mean square (RMS) point-

proton radius here for a few selected cases for α and set β = 1 without loss of generality. Similar

convergence studies for other single-particle basis functions, as well as other observables, will be

addressed in the future. In addition, we could consider using the total angular momentum j in place

of, or in addition to, the orbital angular momentum l in determining the weight, to give different

emphases to spin-orbit partner orbitals; and furthermore, we could differentiate the weights for proton

and neutron orbitals.

In Fig. 4 we present the ground state energy of 8He with the Daejeon16 NN interaction [25]

at specific choices of α (with β = 1). The conventional Nmax truncation is recovered for α = 2, in

which case Wmax = 18 corresponds to Nmax = 14 for 8He. In order to make these comparisons at
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Fig. 4. Ground state energy of 8He with Daejeon16 as function of the HO basis parameter ~ω (left) and as

function of the basis size at ~ω = 15 MeV (right) for using different single-particle weights (α n + l).

approximately constant computational effort, we select a cutoff Wmax for each calculation (quoted in

the legend) such that it produces similar matrix dimensions of about two billion. We observe in the left

panel of Fig. 4 that, as we decrease the weight of radial excitations compared to angular excitations,

the dependence of the ground state energy on the HO parameter ~ω decreases. Furthermore, we see

that α = 1.0, i.e. an orbital weight of W = (n + l), gives the lowest upper bound near the variational

minimum even though it has the smallest dimension among the cases in this comparison set.

In the right panel of Fig. 4 we examine the convergence rate of the ground state energy of 8He as

a function of the many-body basis size for the same set of choices for α as in the left panel at a fixed

value of the basis parameter ~ω. As expected, all choices of weights produce convergence from above

with increasing basis size in concert with the variational principle. As the separate curves approach

the same asymptotic value, the differences among the curves may seem small on this scale, but in the

inset we can clearly see that for basis sizes between a million and a few billion the calculations with

α = 1.0 are closer to convergence than the other calculations with comparable basis sizes. For bases

of 10 billion or more, α = 0.5 might be an even better choice.

Next, let us consider a different observable, namely the point-proton RMS radius of 8He. Note that

this obervable is known to converge slowly with Nmax in the conventional NCSM truncation, because

the r2 operator is long-range and therefore sensitive to the asymptotic tail of the wave function. Our

results are presented in Fig. 5, using these same weights for the single-particle states and the same

cutoffs in the many-body basis as for the ground state energies.

First, we consider the dependence of the RMS point-proton radius on ~ω in the left panel of

Fig. 5. Again, as we decrease the weight of radial excitations compared to angular excitations, the

dependence of the RMS radius on the HO parameter ~ω decreases. However, without the benefit

of a variational principle for this observable, it is more challenging to determine which truncation

provides the most rapid convergence. Nevertheless, greater independence of ~ω would be one favor-

able indicator of improved convergence. Among the cases examined, the (0.5 n + l) case displays the

smallest ~ω dependence over the entire ~ω range shown. Furthermore, the ~ω dependence is weakest

in the low ~ω region where the ground state energies are near their minima with respect to ~ω as

seen in the left panel of Fig. 4 above. Based on this criterion alone, it would seem to suggest that the

preferred weight for this observable is W = (0.5 n + l) among the cases we examined, although that

is not the preferred weight obtained by considering the ground state energy above.

Turning our attention to the right panel of Fig. 5 we present the RMS point-proton radius as a

function of many-body basis size at a fixed value of the basis parameter, that is ~ω = 10 MeV. Here,
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(α n + l).

the case (n + l) provides the RMS radius results with the least sensitivity to many-body basis size

at higher dimensions. Note that this is the preferred weight for the convergence of the ground state

energy. Clearly, it would be worthwhile continuing these investigations to larger many-body bases

and different choices for the single-particle weights in order to map out the convergence with respect

to the single-particle orbital weights and the many-body truncation.

4. Conclusions and Outlook

By benchmarking the NC-MCSM and the NCSM approaches, we confirm that their respective

extrapolated ground state energy results are in agreement with expectations. For the NC-MCSM, ex-

trapolated ground state energies using the energy variance method agree with the FCI results where

available. Furthermore, the NC-MCSM and the NCSM results for the ground state energy with in-

creasing basis size are consistent with each other. However, the NC-MCSM results lie above the

NCSM results at comparable many-body basis sizes. For progressing to heavier nuclei, the NC-

MCSM shows superior computational scaling properties and is expected to provide valuable ab initio

results in these heavier systems where the NCSM has limited utility at the present time.

We also explored different truncation schemes of the many-body basis in the NCSM frame-

work and found encouraging results by including more harmonic oscillator single-particle states with

higher radial quantum numbers than would be included with the traditional Nmax truncation. The

ground state energy of 8He converged more rapidly with increasing basis size using weights for the

single-particle orbitals of W = (n+ l), in combination with a cutoffWmax on the sum of these weights

for the many-body configurations in our basis. Furthermore, both the ground state energy and the

RMS point-proton radius showed significantly improved independence of the basis parameter ~ω

with these single-particle weights.

There is much work to be done to more fully explore the opportunities of alternative trunca-

tion schemes. To list a few here, we mention: (1) adopting natural orbitals or other single-particle

bases; (2) investigating additional nuclei; (3) adopting other Hamiltonians including those with three-

nucleon interactions; (4) mapping out the convergence patterns of additional observables and (5)

developing and applying extrapolation methods for all observables.

We look forward to continuing our joint efforts with our colleagues in Japan and we wish Taka-

haru Otsuka good health and many active and enjoyable years ahead.
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