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Abstract Structural phenomena in nuclei, from shell

structure and clustering to superfluidity and collective

rotations and vibrations, reflect emergent degrees of

freedom. Ab initio theory describes nuclei directly from

a fully microscopic formulation. We can therefore look

to ab initio theory as a means of exploring the emer-

gence of effective degrees of freedom in nuclei. For the

illustrative case of emergent rotational bands in the Be

isotopes, we establish an understanding of the underly-

ing oscillator space and angular momentum (orbital and

spin) structure. We consider no-core configuration in-

teraction (NCCI) calculations for 7,9,11Be with the Dae-

jeon16 internucleon interaction. Although shell model

or rotational degrees of freedom are not assumed in the

ab initio theory, the NCCI results are suggestive of the

emergence of effective shell model degrees of freedom

(0~ω and 2~ω excitations) and LS-scheme rotational

degrees of freedom, consistent with an Elliott-Wilsdon

SU(3) description. These results provide some basic in-

sight into the connection between emergent effective

collective rotational and shell model degrees of freedom

in these light nuclei and the underlying ab initio micro-

scopic description.

1 Introduction

Nuclei are quantum many body systems where the

structural phenomena and spectroscopic features char-

acteristically reflect emergent degrees of freedom, from

shell structure and clustering to superfluidity and col-

lective rotations and vibrations. These degrees of free-

dom are traditionally the domain of phenomenological

models [1–5], yet their description may be placed on a

more fundamental footing if viewed in terms of effec-

tive theories built on a microscopic description. Indeed,

the emergent phenomena of nuclear structure may be

viewed as simply the topmost tier in a tower of effective

theories of nuclear physics beginning at the subnucle-

onic level [6, 7].

Ab initio nuclear theory attempts a direct descrip-

tion explicitly from the fully microscopic formulation of

the many-body system in terms of nucleons and their

free-space interactions. An accurate treatment of corre-

lations can be computationally challenging, but ab ini-

tio theory now reproduces signatures of emergent phe-

nomena, including clustering [8–13] and rotation [14–

19], primarily in light nuclei. We can look therefore to

ab initio theory as a means of exploring the emergence

of effective degrees of freedom from a microscopic foun-

dation, and understanding their place within the full

description of nuclear properties and spectroscopy.

To explore the physical structure of emergent rota-

tion in some of the lightest nuclei, and to gain some

insight into the nature of the relevant effective de-

grees of freedom, we consider here a few illustrative

“case studies” of rotational bands in ab initio no-core

configuration interation (NCCI) [20], or no-core shell

model (NCSM), calculations of the odd-mass Be iso-

topes, specificially, 7,9,11Be.

Some of these rotational bands (or portions thereof)

have been studied before in NCCI calculations [14–

17, 21]. However, these earlier calculations, which were

based on internucleon interactions such as JISP16 [22]

and NNLOopt [23], suffered from a significant limita-

tion: excited rotational bands were relatively poorly

converged in the many-body calculations, lying at much

higher excitation energy than they would either in a

more completely converged calculation for those in-

teractions or, indeed, in experiment. In practice, this

meant that portions of the bands, especially at lower

angular momentum, lay in regions of the spectrum
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where the calculated level density was high, and mixing

or fragmentation consequently tended to obscure these

bands.

Here we make use of the much softer Daejeon16 in-

ternucleon interaction [24], which permits more rapidly

convergent NCCI calculations. This interaction is ob-

tained starting from the classic Entem-Machleidt N3LO

chiral perturbation theory interaction [25], which is

then softened via a similarity renormalization group

transformation and subsequently adjusted via a phase-

shift equivalent transformation to yield an accurate de-

scription of light nuclei with A ≤ 16.

In cases where only fragmented precursors of excited

rotational bands were obtained in previous calculations,

these bands are now found low in the excitation spec-

trum, and approaching their converged energies. Im-

proved convergence means not only that the rotational

energies themselves are more accurately described, but

that the band structure itself becomes clearer. The

cleaner rotational spectrum, comparatively free from

fragmentation, permits easier interpretation and un-

derstanding of the electric quadrupole (E2) transition

spectroscopy.

Improved convergence also, in principle, allows more

meaningful identification of experimentally observed

counterparts to the rotational states. However, doing

so requires detailed understanding of the energy conver-

gence and, for the less completely converged energies,

likely still entails some form of basis extrapolation [26–

31]. Our focus here will thus primarily be restricted to

the nature of the emergent structure arising in solving

the many-body problem, rather than detailed compar-

ison with experiment (e.g., Refs. [32, 33]).

Beyond simply analyzing the spectroscopic signa-

tures of emergent phenomena appearing in ab initio

calculations, we can make use of microscopic wave func-

tions obtained in these calculations to directly probe

for structural insight. In the following discussions, we

examine the decompositions of the wave functions in

terms of oscillator excitations (i.e., “0~ω” and “2~ω”

or higher contributions) and spin and orbital angular

momentum contributions. We build here on Johnson’s

analysis [21] of the angular momentum structure of ro-

tational states.

In characterizing effective theories of emergent nu-

clear phenomena, we consider not only emergent de-

grees of freedom, but also emergent symmetries. Dy-

namical symmetries [34–37] in general can be responsi-

ble for the emergence of simple patterns in the behav-

ior of complex systems. In the traditional shell model,

Elliott’s SU(3) dynamical symmetry [38–41] provides

a mechanism for the emergence of rotation, as aris-

ing naturally within the SU(3) irreducible representa-

tions (irreps) preferred by a quadrupole-quadrupole in-

teraction. The symplectic group Sp(3,R), which con-

tains Elliot’s SU(3) as a subgroup, and the multishell

symplectic shell model associated with this group, has

then been proposed as providing a microscopic formula-

tion of the unified collective model [42–44]. Wave func-

tions obtained in ab initio calculations have indeed been

found to receive strong contributions from specific dom-

inant U(3) or Sp(3,R) symmetry components [45–50].

We shall therefore comment, at least briefly, on how the

rotational structures considered here can relate to such

symmetries.

In the following explorations, we begin with 9Be

(Sec. 3). The low-lying rotational bands in both the

natural (negative) parity and unnatural (positive) par-

ity spaces provide particularly clean illustrations of the

angular momentum structure of the rotational bands

and the implications of Elliott SU(3) dynamical sym-

metry.

Then 11Be (Sec. 4) provides an example of the co-

existence of 0hw and 2~ω rotational bands within the

same spectrum, and thus of rotation outside the effec-

tive space of the 0~ω shell model.

Finally, 7Be (Sec. 5) introduces the qualitatively dis-

tinct situation in which the 0~ω ground state band is

connected by strong E2 transitions to a 2~ω excited

band. This excitation may be understood in terms of

Sp(3,R) ⊃ U(3) dynamical symmetry [51, 52]. In the

macroscopic limit, it would be construed as representing

the excitation of an effective giant quadrupole degree of

freedom.

However, we first (Sec. 2) lay out the excitation

spectra obtained in ab initio NCCI calculations for all

three nuclei. In preparation for the following discus-

sions, we review the basic spectroscopic properties of

nuclear rotations, as well as stress the importance of

considering convergence (with respect to the basis for

the NCCI calculation) in interpreting any such results.

2 Rotational signatures and overview of

calculations

2.1 Rotational spectra

Rotational bands are commonly recognized (whether in

experiment or in calculations) by energies following the

rotational formula, relative E2 strengths following the

rotational formulas (Alaga rules) [53], and enhanced E2

strengths overall. In terms of the physical structure of

the rotational band members, these features arise from

a shared intrinsic structure, combined with a different

overall rotational motion, for the different members of

the same rotational band. That is, in ideal rotation,
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there is an adiabatic separation of degrees of freedom,

between a rotational intrinsic state and the collective

rotational coordinates (Euler angles). In the case of an

axially symmetric intrinsic state |φK〉, the angular mo-

mentum is characterized by a definite projectionK onto

the intrinsic symmetry axis, and the rotational band

members have angular momenta J ≥ K, with wave

functions [54]

|ψJKM 〉 ∝
∫
dϑ
[

DJ
MK(ϑ) |φK ;ϑ〉

+ (−)J+KDJ
M,−K(ϑ) |φK̄ ;ϑ〉

]
, (1)

where the Wigner D function constitutes the wave func-

tion in the collective rotational Euler angle coordinates

ϑ, while |φK ;ϑ〉 represents the intrinsic state after rota-

tion by Euler angles ϑ. The second term, involving the

conjugated intrinsic state |φK̄〉 with angular momen-

tum projection −K along the intrinsic symmetry axis,

arises to preserve symmetry under rotation by an angle

π about an axis perpendicular to the symmetry axis.

Band members are then expected to have energies

following the rotational formula

E(J) = E0 +AJ(J + 1), (2)

where the rotational energy constant A ≡ ~2/(2J ) is

inversely related to the moment of inertia J of the

rotational intrinsic state, and the intercept parameter

E0 = EK−AK2 is related to the energy EK of the rota-

tional intrinsic state. However, for K = 1/2 bands, the

Coriolis contribution to the kinetic energy significantly

modifies the energies, leading to an energy staggering
which is given, in first-order perturbation theory, by

E(J) = E0 +A
[
J(J + 1) + a(−)J+1/2(J + 1

2 )
]
, (3)

where the Coriolis decoupling parameter a depends

upon the structure of the rotational intrinsic state.

The excitation spectra obtained in NCCI calcula-

tions for the odd-mass isotopes 7,9,11Be are shown in

Figs. 1–3, with energies plotted against an angular mo-

mentum axis scaled as J(J+1), as appropriate for rota-

tional energy analysis. The states identified with the ro-

tational bands discussed in the following are highlighted

(red outlines). The E2 transitions from these levels are

shown, specifically, for angular-momentum decreasing

transitions originating from band members. The line

thicknesses (and shadings) indicate relative transition

strengths. Further details of the calculations are defined

below.

For the bands in Figs. 1–3, the energies expected

from the rotational energy relations (2) or (3) are shown

as best fit lines. [For the K = 1/2 bands, the three pa-

rameters in (3) are simply determined to match the cal-

culated energies of the three lowest-energy band mem-

bers.]

A common criterion for identifying rotational band

members is that, loosely speaking, E2 strengths be-

tween rotational band members are expected to be “en-

hanced”. The E2 matrix elements within a rotational

band follow the Alaga relations, and thus all E2 ma-

trix elements within a band should follow a pattern

of relative intensities given by Clebsch-Gordan coeffi-

cients. Then, the overall scale of the intensities is de-

termined by the E2 matrix element within the intrinsic

state or, equivalently, by the intrinsic quadrupole mo-

ment Q0. (Similar relations apply to interband transi-

tions between the same two rotational bands, with the

overall strength given by an interband intrinsic matrix

element.) For B(E2) strengths (i.e., reduced transition

probabilities) within a band, the rotational relation be-

comes

B(E2; Ji → Jf ) =
5

16π
(JiK20|JfK)2(eQ0)2. (4)

This relation yields the strengths in Fig. 4, where dif-

ferent curves apply depending upon K for the band,

which, for an ideal K = 1/2 band, gives the transition

pattern illustrated in Fig. 5.

Consequently, E2 transitions within a band are en-

hanced to the extent that the intrinsic matrix ele-

ment is larger than the typical scale of E2 matrix ele-

ments between arbitrary states not within a band. This

is commonly the case, as rotation is associated with

quadrupole deformation. Even so, it is worth keeping in

mind that not all transitions within a rotational band

are expected to be “strong”, if they are suppressed by

the Clebsch-Gordan coefficient, e.g., for the K = 1/2

band (Fig. 5), the ∆J = 1 transitions (with the excep-

tion of the 3/2→ 1/2 band head transition) are highly

suppressed relative to the ∆J = 2 transitions.

2.2 Convergence of rotational observables

The NCCI approach is based upon expressing the nu-

clear many-body system in terms of a basis of antisym-

metrized products (Slater determinants) of harmonic

oscillator single-particle states. The many-body Hamil-

tonian is represented as a matrix in terms of this basis,

and the energy eigenvalues and wave functions are ob-

tained by solving the (large) matrix eigenproblem which

ensues.

Calculations must, of course, be carried out in a fi-

nite, truncated basis, and the results depend upon this

truncation. Each basis state represents a configuration



4

9Be (P=-)
Daejeon16
Nmax=10 =15MeV

(a)

0

5

10

15

E
x
(M
eV

)

1/2 3/2 5/2 7/2 9/2

J

9Be (P=+)
Daejeon16
Nmax=11 =15MeV

(b)

0

5

10

15

E
x
(M
eV

)

1/2 5/2 7/2 9/2 11/2 13/2

J

Fig. 1 Ab initio calculated energy spectra for 9Be (a) negative and (b) positive parity, obtained for the Daejeon16 interac-
tion. Calculations are with basis truncations Nmax = 10 and 11, respectively, and oscillator basis parameter ~ω = 15 MeV.
Experimental energies (green horizontal lines) are shown for comparison (see text). Rotational band members are highlighted
(red squares), and rotational energy fits (2) or (3) are indicated by lines. The J-decreasing E2 transitions originating from
these rotational band members are shown (specifically, transitions with Jf < Ji or with Jf = Ji and Ef < Ei), where the line
thickness (and shading) is directly proportional to the B(E2) strength, normalized independently within each panel. States
are approximately classified as 0~ω (filled symbols) or 2~ω (open symbols) for natural parity, or similarly 1~ω and 3~ω for
unnatural parity, by the dominant oscillator configuration (see Sec. 3.2). The maximal valence angular momentum, i.e., the
largest which can be constructed in the 0~ω or 1~ω space, respectively, is indicated by the vertical dashed line. Excitation
energies are taken separately within each parity.
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Fig. 2 Ab initio calculated energy spectra for 11Be (a) negative and (b) positive parity, obtained for the Daejeon16 interaction,
with basis truncations Nmax = 10 and 11, respectively. See Fig. 1 caption for further description of figure contents and labeling.

of nucleons distributed over oscillator shells, and is thus

characterized by the number Nex of oscillator excita-

tions above the lowest Pauli-allowed filling of oscillator

shells. The basis is commonly constrained by limiting

the number of excitations to Nex ≤ Nmax. (Results ob-

tained with a truncated basis also depend upon the un-

derlying oscillator length scale [55] defining the basis,

given by the basis parameter ~ω.) However, as Nmax

increases, results converge towards those which would

be obtained in the full, untruncated many-body space,

and thus also must become independent of the basis

parameter ~ω.

The results shown in Figs. 1–3 are obtained in spaces

truncated to Nmax = 10 or 11 for 9,11Be (Figs. 1–2) and

Nmax = 14 for 7Be.1 These calculations were obtained

1 For odd-mass p-shell nuclei, as considered here, note that
the “natural” parity, obtained with the lowest allowed fill-
ing of harmonic oscillator shells, as in a traditional “0~ω”
shell model description, is negative parity. An NCCI basis
consisting of configurations with even numbers of oscillator
excitations (Nex = 0, 2, . . .), and thus having an even Nmax,
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Fig. 3 Ab initio calculated energy spectra for 7Be nega-
tive parity, obtained for the Daejeon16 interaction, with basis
truncation Nmax = 14. See Fig. 1 caption for further descrip-
tion of figure contents and labeling.
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Fig. 4 Rotational Alaga rule predictions for B(E2) strengths
within a rotational band, normalized to the square of the in-
trinsic quadrupole moment Q0, shown separately for ∆J = 2
(solid curves) and ∆J = 1 (dotted curves) transitions. Curves
are shown for bands with 0 ≤ K ≤ 5/2, as indicated.

based on the Daejeon16 interaction plus Coulomb in-

teraction, with oscillator basis parameter ~ω = 15 MeV

(roughly corresponding to the variational minimum en-

ergy), using the M -scheme NCCI code MFDn [56–58].

Initial results from the present calculations were in-

cluded in Refs. [32, 33].

The accuracy which can be obtained in solving the

many-body problem is limited by the highest Nmax-

truncated spaces which are computationally accessible.

In 9Be, an Nmax = 13 space (dimension ∼ 1.1 × 1010)

pushes the limits of current computational capabilities.

yields the natural parity space, while an NCCI basis con-
sisting of configurations with odd numbers of oscillator ex-
citations (Nex = 1, 3, . . .), and thus odd Nmax, yields the
unnatural parity space.
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Fig. 5 Rotational predictions for B(E2) strengths within an
ideal K = 1/2 band. The line thickness (and shading) is di-
rectly proportional to the B(E2) strength.

The dependence of calculated energies on the trunca-

tion Nmax, as well as on the basis parameter ~ω, may

be seen for the ground state 3/2−1 (solid curves) and

ground state rotational band member 5/2−1 (dashed

curves) of 9Be in Fig. 6(a). While the curves corre-

sponding to succesive steps in Nmax are coming closer

together, and flattening in their dependence on ~ω as

well, the calculated energy eigenvalues are still chang-

ing by amounts on the order of 1 MeV with each step

in Nmax, even near the variational minimum (~ω ≈
15 MeV). The use of softened interactions, such as the

Daejeon16 interaction considered here, ameliorates but

clearly does not eliminate the challenge of convergence.

Given that the rotational spacings are also on the
order of MeV, it is not a priori clear that detailed fea-

tures of the rotational spectrum should be well-resolved

in the calculations. Yet, despite limitations in conver-

gence, the rotational pattern of energy spacings is read-

ily apparent. While the energy eigenvalues of the in-

dividual states within a band may be decreasing with

Nmax, the energies of states belonging to the same band

decrease together.

Returning to the lowest 3/2− and 5/2− states in
9Be, consider their energy difference, giving the excita-

tion energy of the 5/2− state within the band, shown in

Fig. 6(b). This difference flattens in ~ω in the vicinity

of ~ω = 15 MeV, where it is changing by . 0.05 MeV

for each step in Nmax. We will note the degree of con-

vergence of relative energies within specific bands, as

well as of the excitation energies of bands relative to

each other, as we explore the band structure in more

detail in the following sections.

For calculated E2 strengths, the convergence chal-

lenge is even more dramatic. The dependences of the
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Fig. 6 Convergence of calculated energy and transition observables for 9Be (top) and corresponding relative observables (bot-

tom): (a) Energies of the 3/2−
1 ground state (solid curves) and 5/2−

1 rotational band member (dashed curves). (b) The energy
difference E(5/2−)−E(3/2−). (c) Transition strengths B(E2; 5/2− → 3/2−) (solid curves) and B(E2; 7/2− → 3/2−) (dashed
curves) within the ground state rotational band. (d) The transition strength ratio B(E2; 5/2− → 3/2−)/B(E2; 7/2− → 3/2−).
The Alaga ratio 12/5 is shown for comparison (horizontal bar). Calculated values are shown as functions of the basis parameter
~ω, for Nmax = 4 to 10 (as labeled). Experimental values [59] are indicated for context (solid squares) in panels (b–d).

calculated E2 strengths, on Nmax and ~ω, are shown

for the 5/2− → 3/2− (solid curves) and 7/2− → 3/2−

transitions within the ground state band in Fig. 6(c).

Neither set of curves, for either transition (solid and

dashed curves, respectively), is obviously approaching

any particular stable, converged value, although the cal-

culated values are already clearly enhanced and grow-

ing relative to the Weisskopf single particle estimate of

∼ 1.1 e2fm4 for A = 9 (see also Fig. 18 of Ref. [15]).

Yet, the relative transition strengths among mem-

bers of the same band are already well-established at

low Nmax, with the ratios of transition strengths ap-

proximately following Alaga rotational relations (see

Figs. 6–8 and 17 of Ref. [15] for quantitative analy-

ses). Returning to the 5/2− → 3/2− and 7/2− →
3/2− transitions of Fig. 6(c), both families of curves

have the same general shape, differing rather in scale.

Taking the ratio of calculated values, B(E2; 5/2− →
3/2−)/B(E2; 7/2− → 3/2−), gives the values shown in

Fig. 6(d). While these are clearly not strictly converged,

there is a clear “shoulder” (inflection) in the ~ω depen-

dence in the vicinity of ~ω = 15 MeV, where the ratio

is changing by . 5% for each step in Nmax. The val-

ues may be compared to the Alaga ratio 12/5 (= 2.4),

from (4), for an ideal K = 3/2 band.

Converged values for observables reflect an accu-

rate solution of the many-body problem as it has been

mathematically formulated. Whether or not the ensu-

ing values are in agreement with experiment is an en-

tirely separate question. Success depends not only on

solving the many-body problem as it has been stated,

but on the fidelity of this many-body problem to the

physical system in the first place and, in particular, on

the accuracy of the internucleon interaction taken as

input to the calculation. That is, success also depends

on the structural integrity of the underlying layers in

the tower of effective theories.

While we attempt to provide some basic contact

with experimental excitation spectra for comparison in

Figs. 1–3 (horizontal lines), the spin-parity assignments

of many experimentally observed levels are unknown or

uncertain, and conflicting spin-parity assignments are
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found in the literature. For simplicity, the experimental

levels shown in Figs. 1–3 are those assigned a unique

angular momentum and parity in the current exper-

imental evaluations [59–61], regardless of whether or

not this assignment is designated as tentative, with one

exception in 11Be.2

Although meaningful comparisons with absolute

E2 strengths [59] or quadrupole moments [64] from

experiment cannot be made in the absence of suffi-

ciently converged calculations for the E2 values, com-

parisons with ratios of experimental E2 strengths can

still be made, where such data are available (see

Sec. III D of Ref. [15]). In particular, the experimen-

tal γ widths and E2/M1 division for the rotational

transitions in 9Be discussed above yield B(E2; 5/2− →
3/2−) = 28(2) e2fm4 and B(E2; 7/2− → 3/2−) =

9.6(41) e2fm4 [59], and thus a ratio of 2.9(13), consistent

(to within large uncertainties) with both the present

calculations and the rotational ratio of 2.4.

3 9Be: LS coupling scheme and Elliott rotation

in the valence shell

3.1 Rotational spectrum and convergence

The rotational spectrum of 9Be provides a starting

point for illustrating many of the essential features of

rotation, building on discussions of the rotational struc-

ture of 9Be from prior NCCI calculations [15, 17, 21].

The near-yrast states in the low-lying calculated spec-

trum of 9Be form three rotational bands: in the negative

parity spectrum [Fig. 1(a)], a KP = 3/2− ground state

(yrast) band and KP = 1/2− excited (yrare) band,

and then, in the positive parity spectrum [Fig. 1(b)], a

KP = 1/2+ yrast band. These rotational bands may be

recognized from the energies, which approximately fol-

low the expected rotational energy spacings (with stag-

gering for the K = 1/2 bands), and from the enhanced

E2 connections between band members.

The main qualitative features of the rotational

bands are robustly calculated, that is, with only small

residual dependences on the truncation of the calcu-

lation. The excitation energies of band members are

shown for successive values of Nmax in Fig. 7. We may

summarize the general features, which are consistent

with the earlier calculations with other interactions (see

Fig. 16 of Ref. [15]). The excitation energies of the two

K = 1/2 bands relative to the ground state are not

2 The experimental level at 3.4 MeV excitation energy in
11Be, which is only identified as (3/2−, 3/2+) in Ref. [61],
is shown as 3/2− in Fig. 2(a), consistent with the rotational
analysis of Refs. [62, 63], where it is taken as a KP = 3/2−

band head. See discussion in footnote 6 of Ref. [32].

as well converged as the spacings within bands, but

much better than the energy eigenvalues themselves.

The KP = 1/2− excited band would appear to be

rapidly converging in excitation energy, towards an en-

ergy lower than that found at Nmax = 10 but within

∼ 1 MeV [32]. The staggering of energies within the

calculated KP = 1/2− band decreases with increasing

Nmax and is consistent with zero (a . 0.1) [Fig. 7(a)].

The staggering within the KP = 1/2+ band, in con-

trast, is pronounced (a ≈ 2) [Fig. 7(b)].

All three bands in the low-lying spectrum of 9Be

terminate, and they do so at angular momenta con-

sistent with a simple 0~ω or 1~ω shell model picture.

For negative parity, the maximal angular momentum

which can be constructed by coupling of the valence

nucleons in the p shell, in a 0~ω description of 9Be, is

9/2 [indicated by the vertical dashed line in Fig. 1(a)].

The KP = 3/2− band terminates at J = 9/2, while

the KP = 1/2− band terminates at the lower angular

momentum J = 7/2. For positive parity, the maximal

angular momentum which can be generated in a 1~ω de-

scription of 9Be, in particular, by exciting one valence

nucleon from the p shell to the sd shell, is J = 13/2

[indicated by the vertical dashed line in Fig. 1(b)]. The

KP = 1/2+ band likewise terminates at this angular

momentum.3

The patterns of E2 transitions within the bands are

generally consistent with those expected from the Alaga

rotational relations (Fig. 4). For instance, for the KP =

1/2+ band, for which the transitions are most clearly

visible in the figure, due to the separation between lines

afforded by the energy staggering [Fig. 1(b)], we may

compare to the similar pattern for an ideal K = 1/2

band (Fig. 5).

There is also a somewhat enhanced interband tran-

sition between the negative parity bands [Fig. 1(a)],

from the J = 9/2 terminating member of the ground

state band to the J = 5/2 member of the excited band

(noted also in Fig. 14 of Ref. [17]). While interband

transitions are certainly possible in a rotational pic-

ture, these are expected to follow Alaga rotational rela-

tions, in which all transition matrix elements between

the same two bands are proportional to a common in-

trinsic interband transition matrix element [54]. This

single enhanced 9/2−1 → 5/2−2 transition, without, say,

3 The yrast 15/2+ and 19/2+ states were considered in
Refs. [15, 17] as possible extended members of the KP =

1/2+ band, on the basis of strong E2 transitions to the 11/2+
1

and 13/2+
1 band members, but these states lie at energies

above what would be expected from the rotational energy
formula. These states would now seem more likely to be mem-
bers of a higher-lying excited rotational band with strong in-
terband transitions, as discussed in detail for the illustrative
case of 7Be in Sec. 5.
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Fig. 7 Calculated energies for rotational band members in 9Be, for (a) negative and (b) positive parity, shown as excitation
energies relative to the negative parity ground state. Rotational energy fits (2) or (3) are indicated by lines. The calculated
bands are for Nmax = 4 to 10 or Nmax = 5 to 11, respectively (smallest through largest symbols, and dotted through solid
curves).

a comparably enhanced 7/2−1 → 3/2−2 transtion, is not

expected in a simple axially symmetric rotational pic-

ture. Rather, it appears to represent a band termination

effect reflecting the limited dimension of the 0~ω shell

model space, which admits only one J = 9/2 state, to

be “shared” between the bands (see also Sec. 3.3 be-

low).

3.2 Structure in oscillator space

A natural first question is then whether or not the ro-

tational structure presented by these states might have

an effective description within a simple valence shell

model space (0~ω or 1~ω, for negative and positive

parity, respectively). The calculated states in Fig. 1(a)

can be loosely identified as “0~ω” or “2~ω” (or higher

Nex~ω) states, in traditional shell model terminology,

based on their decompositions in the harmonic oscil-

lator basis. Similarly the calculated states in Fig. 1(b)

can be loosely identified as “1~ω” or “3~ω” (or higher

Nex~ω).

The contributions from configurations of different

Nex to the wave function norm (or probability) are

shown in Fig. 8, for the calculated wave functions of

the ground state band members. The contribution from

Nex = 0 dominates in each band member [Fig. 8(a)], al-

though the details are dependent upon the truncation

of the calculation [Fig. 8(b)]. In general, some of this

probability “bleeds off” to higher Nex as the wave func-

tions are calculated in higher Nmax spaces. The rough

classification of states as 0~ω or 2~ω (shaded and open
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Fig. 8 Decompositions of 9Be KP = 3/2− ground state
band members, with respect to number of excitation quanta
Nex in the contributing oscillator configurations: (a) Decom-
positions of all band members 3/2 ≤ J ≤ 9/2 (solid through
dotted curves), as calculated for Nmax = 10. (b) Decom-
position of the 3/2− band head (i.e., the ground state), as
calculated for Nmax = 4 to 10 (dotted through solid curves).

symbols, respectively) in Figs. 1–3 is determined sim-

ply by considering whether the largest contribution to

the wave function comes from Nex = 0 oscillator many-
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body basis states or Nex = 2 oscillator many-body basis

states [33, 65] (the classification into 1~ω and 3~ω states

for unnatural parity is accomplished similarly).

Examination of the different oscillator-basis Nex

contributions is suggestive, and provides a potentially

valuable diagnostic tool to recognize qualitative pat-

terns in the calculated spectra (as in the following

Secs. 4 and 5). However, it is important to keep in mind

that the Nex decomposition in an oscillator basis is at

best an approximate indicator of structure, even aside

from the dependence on the Nmax truncation of the

calculation. We may at most loosely identify Nex~ω ex-

citations in an oscillator basis with Nex~ω excitations

in the traditional shell model, which are taken to be

particle-hole excitations above a physically-meaningful

mean-field (e.g., Hartree-Fock) vacuum. Furthermore,

even for fully converged calculations of the exact same

wave function, different results are obtained for the de-

composition into oscillator basis functions, depending

upon the choice of length scale (or ~ω parameter) for

the oscillator basis into which the decomposition is be-

ing carried out (here, recall, we are working with a basis

parameter of ~ω = 15 MeV, chosen near the variational

energy minimum for calculations with the Daejeon16

interaction).

Nonetheless, for the calculated 9Be rotational band

members, the dominance of Nex = 0 contributions sug-

gests that an effective description in the valence shell

may not be unreasonable. Such an effective description

could be approached through, e.g., reformulation of the

ab initio problem in a valence space obtained through

application of the in-medium similarity renormalization

group (IM-SRG) [66, 67].

3.3 Angular momentum structure

The LS angular momentum coupling scheme is under-

stood to play a significant role in the structure of p-

shell nuclei, in possible competition with the jj cou-

pling scheme which becomes predominant in heavier

nuclei [68, 69]. While jj coupling refers to the role of

single-particle j orbitals, the concept of LS coupling

is independent of choice of single-particle basis, or even

the concept of a single-particle basis. It is defined rather

in terms of the total orbital (spatial) angular momen-

tum L of the nucleons, and their total spin angular mo-

mentum S, by the condition that the many-body state

have sharp angular momenta L and S, combining to

give the total J .

That the ab initio calculated negative parity rota-

tional band members of 9Be largely obey LS coupling

was demonstrated in Ref. [21], in the context of calcula-

tions with the Entem-Machleidt N3LO interaction. The

portion of any NCCI calculated wave function coming

from contributions with a given L or S is not manifest

from its expansion in a tradititional M -scheme basis,

but the so-called “Lanczos trick”4 may be used to de-

compose the original calculated wave function into con-

tributions from the different eigenspaces of L2 and S2,

and thus according to L and S.

For the 9Be negative parity band members, the L

and S decompositions from the present calcuations with

the Daejeon16 interaction are shown in Fig. 9. The

salient feature of the LS structure, discussed for the

earlier calculations in Refs. [17, 21], is that the domi-

nant L contributions for successive band members are

L = 1, 2, 3, and 4, while the spin is predominantly

S = 1/2. In the ground state KP = 3/2− band, the

angular momenta are coupled in the “aligned” sense,

giving J = L + 1/2, and thus J = 3/2, 5/2, 7/2, 9/2.

In the excited KP = 1/2− band, these same angular

momenta are coupled in the “antialigned” sense, giving

J = L− 1/2, and thus J = 1/2, 3/2, 5/2, 7/2.

A more concise overview of the angular momentum

structure of these bands is obtained by considering a

single “effective” (or mean) orbital angular momentum

L̄ for each state, defined in terms of the expectation

value of the L2 operator as5

L̄(L̄+ 1) ≡ 〈L2〉. (5)

Effective proton spin, neutron spin, and spin angular

momenta (S̄p, S̄n, and S̄, respectively) may be obtained

similarly, e.g., S̄(S̄ + 1) ≡ 〈S2〉. Plotting these quan-

tities against J , as in Fig. 10, provides an illuminat-

ing illustration of the linear growth in L within both

bands, along with the near constant Sp, Sn, and S, and

the shift between aligned and antialigned coupling for

the two bands. Observe that the total spin (S ≈ 1/2)

comes primarily from the neutron spin (Sn ≈ 1/2),

4 The Lanczos trick, originally devised for evaluating strength
functions [70–72], may be used to obtain the decomposition
of a wave function with respect to eigenstates of any given
Hermitian observable operator, such as the squared angular
momentum operators, to obtain angular momentum decom-
positions [21], or a more general group’s Casimir operator,
to obtain a decomposition into irreps of this group [73]. It is
necessary only to take the calculated wave function and use
it as the new pivot vector for a Lanczos diagonalization of
the L2 operator, S2 operator, or other operator of interest.
5 The expectation value of 〈L2〉, and thus the effective L̄, can
always be recovered from the full angular momentum decom-
position by L, and thus provides no new information relative
to this full decomposition (and similarly for the effective spin
angular momenta). However, 〈L2〉 is the expectation value
of a rotational scalar two-body operator, a standard class of
observables to extract from NCCI wave functions, and can be
computed much more efficiently than the full decomposition,
which requires further Lanczos diagonalizations.
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Fig. 9 Orbital angular momentum decompositions of 9Be negative parity states: KP = 3/2− ground state band members

(3/2−
1 , 5/2−

1 , 7/2−
1 , 9/2−

1 ) (bottom), KP = 1/2− excited band members (1/2−
1 , 3/2−

2 , 5/2−
2 , and 7/2−

3 ) (top), and an off-yrast

state lying between the bands (7/2−
2 ) (middle). Spin angular momentum decompositions are shown as insets. Based on wave

functions calculated for Nmax = 10.

with the proton spins coupling to give a total near zero

(Sp ≈ 0).6

A natural simple interpretation, based on this LS

structure, identifies the two negative parity bands in
9Be as LS spin-flip partners, involving the same orbital

(that is, spatial) structure but opposite couplings to the

spin [17]. The orbital motion is then consistent with be-

ing rotational in nature, described by a KL = 1 band

with orbital angular momenta L = 1, . . . , 4. That is,

the orbital motion is based on an intrinsic state with

projection KL = 1 of the orbital angular momentum

along the symmetry axis. The total angular momenta

J = 1/2, 3/22, 5/22, 7/22, 9/2 then follow simply by an-

gular momentum coupling of L and S.

For the positive parity band (KP = 1/2+), a decid-

edly different LS angular momentum structure is ob-

tained, as may be seen from the effective angular mo-

menta in Fig. 11. Here, the spin is again predominantly

S ≈ 1/2 and again arises from the neutrons, but the or-

bital angular momenta now form a stair-step pattern:

6 When interpreting small values of L̄ or S̄, we must keep in
mind the nonlinear relationship entering into the definition of
the effective angular momentum. A small admixture of higher
spin into an S = 0 state can have an outsized effect on S̄, e.g.,
an effective S̄ ≈ 0.2 is obtained with only a 10% admixture
of S = 1.

L ≈ 0, 2, 2, 4, 4, 6, 6, for the J = 1/2, . . . , 13/2 states,

respectively. A natural simple description for this band

is thus based on orbital motion consisting of a KL = 0

rotational band, containing even values of angular mo-

mentum (L = 0, . . . , 6). Then, successive band mem-

bers alternate between anti-aligned and aligned cou-

plings of L and S.

We have already noted that the negative parity band

members in the ab initio calculations appear to be pri-

marily 0~ω states (Sec. 3.2) and could thus potentially

be described within a shell-model effective theory. It

is thus informative to compare their LS momentum

structure with that expected in an Elliott SU(3) shell

model description. The states which are brought lowest

in energy by an SU(3) quadrupole-quadrupole Hamilto-

nian are those forming the leading irrep of SU(3) aris-

ing in the valence shell model space of the nucleus, i.e.,

the irrep having the largest eigenvalue for the SU(3)

Casimir operator. For 9Be, the leading irrep has quan-

tum numbers (λ, µ) = (3, 1) and, from fermionic anti-

symmetry constraints, occurs in association with a total

spin S = 1/2. According to the SU(3)→ SO(3) angular

momentum branching rule, the (3, 1) irrep indeed con-

tains a single KL = 1 band, with L = 1, 2, 3, 4, exactly

as found here in the ab initio calculations.
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Fig. 10 Effective values of orbital and spin angular mo-
menta for 9Be negative parity rotational band members:
(a) KP = 3/2− ground state band and (b) KP = 1/2− ex-
cited band. Based on wave functions calculated for Nmax = 4
to 10 (dotted through solid curves).
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Fig. 11 Effective values of orbital and spin angular momenta
for 9Be positive parity rotational band members (KP = 1/2+

band). Based on wave functions calculated for Nmax = 5 to
11 (dotted through solid curves).

While we have focused thus far on the strict LS cou-

pling limit, such does not provide a satisfactory descrip-

tion beyond reproducing the overall angular momentum

J content of the bands. Indeed, the simple picture of a

KL band, with rotation only in the orbital degrees of

freedom, would give an energy spacing proportional to

L(L + 1) rather than J(J + 1), as seen in Fig. 1, and

sets aside the question of the Coriolis staggering.

Here it may be useful to point out that there are

two conceptually distinct transitions between coupling

schemes potentially being driven by the spin-orbit in-

teraction. In the context of the shell model, where the

strength of the spin-orbit interaction controls the tran-

sition from LS to jj coupling, these schemes are termed

the weak coupling and strong coupling regimes, respec-

tively [68].

However, in the context of collective rotation, when

an odd-mass nucleus is presumed to factorize into a

collective rotational core and residual degrees of free-

dom (typically the last odd nucleon), weak coupling

and strong coupling have a different meaning (see, e.g.,

Sec. 1.8 of Ref. [5] and Sec. 7.5 of Ref. [54]). In weak ro-

tational coupling, the motion of the residual nucleon is

independent of the rotation of the core, except for cou-

pling to yield a resultant angular momentum. In strong

rotational coupling, the residual nucleon fully partic-

ipates in the rotational intrinsic wave function |φK〉,
contributing a definite angular momentum projection

along the intrinsic axis. Thus, the adiabatic rotational

wave function described in (1) represents the strong

coupling limit of collective rotation.

As demonstrated by Elliott and Wilsdon [41], in the

context of the SU(3) picture, a modest spin-orbit inter-

action (intermediate coupling, in the shell model spin-

orbit sense) serves to mix the states of different L but

same final J , after coupling to spin. (That is, for the

present example of 9Be, mixing occurs at each J be-

tween the pair of states with L = J ± 1/2, i.e., from

the two different spin-flip partner bands.) The resulting

spectrum consists of states of definite K = KL + KS

(strong coupling, in the collective rotational sense). The

energies approximate a conventional J(J+1) rotational

spectrum, including the usual Coriolis term in the case

of K = 1/2, that is, following the usual rotational en-

ergy formula (2) or (3). Note that, in this SU(3) inter-

pretation, the strong rotational coupling is not between

an even-even core and last odd particle, as in a tra-

ditional particle rotor picture, but rather between the

orbital (spatial) motion of all nucleons and the resid-

ual unpaired spin. The SU(3) interpretation of the 9Be

ground state band, including such mixing, is discussed

by Millener [74]. Certainly, some Lmixing (L = J±1/2)

is apparent for the calculated states in Fig. 9.
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While weak rotational coupling (good L) states

form an orthogonal basis, the strong rotational coupling

(good K) states obtained within a shell model space,

in the Elliott-Wilsdon picture, lead to a breakdown of

the band structure at high J , i.e., near band termi-

nation. The resulting state in the SU(3) shell model

picture cannot be uniquely identified with a specific K

band (recall the ambiguous transition pattern from the

terminating 9/2− state in Sec. 3.1).

The orbital angular momentum projections KL for

the rotational intrinsic state suggested by these obser-

vations on the LS structure of 9Be are also consistent

with the appealing intuitive description of these bands

as arising from nuclear molecular rotation. In a molec-

ular description, 9Be is composed of two α clusters plus

a single valence neutron, which occupies a molecular or-

bital in the potential generated by the clusters [75–78].

Within each α particle, the spins of both protons and of

both neutrons must couple to give zero resultant spin,

leaving only the spin contribution of the last neutron

(S = 1/2). Thus, while the rotational band members in

the negative parity space could be consistent with such

a picture, other low-lying states, e.g., the calculated

7/2−2 state, with dominant spin contribution S = 3/2

[Fig. 9 (middle row)], must involve breaking of an α

particle.

In the phenomenological cluster molecular orbital

description, as discussed in Ref. [78], both the KP =

3/2− and KP = 1/2− negative parity bands are ob-

tained from an intrinsic state in which the neutron

is in a π orbital, i.e., giving angular momentum pro-

jection KL = 1 along the symmetry axis defined by

the clusters. Rotational strong-coupling intrinsic states

with definite K = 3/2 and K = 1/2 then arise from the

aligned and anti-aligned combinations K = KL ±KS ,

respectively, with the projection KS = 1/2 of the neu-

tron spin along the symmetry axis. The positive par-

ity KP = 1/2+ band instead arises from an intrinsic

state for which the neutron is in a σ orbital, i.e., giving

KL = 0, and thus K = KS = 1/2.

4 11Be: Rotation outside the valence space

4.1 Rotational spectrum and convergence

The low-lying calculated spectrum of 11Be, shown in

Fig. 2, brings in new rotational characteristics, most

notably, a natural parity rotational band which lies out-

side the realm of a 0~ω effective theory. These rota-

tional bands again have well-defined angular momen-

tum structures in an LS coupling picture.

The nucleus 11Be is well-known for the so-called par-

ity inversion which arises in the spectrum. That is, the

experimental 1/2+ ground state is of positive (and thus

unnatural) parity, contrary to what might naively be

expected from shell-model considerations [79]. It lies

0.320 MeV below the 1/2− lowest negative (natural)

parity level [61]. This parity inversion, which is gener-

ally considered challenging to reproduce in an ab initio

NCCI framework and is known to be sensitive to the

details of the interaction [80, 81], is obtained in calcu-

lations with the Daejeon16 interaction [82]. Considering

the near degeneracy of the lowest 0~ω and 1~ω states,

within a shell-model interpretation, it is perhaps not

surprising that 2~ω states should also be found at low

excitation energy.

Starting with the negative parity spectrum, the cal-

culated 1/2−1 , 3/2−1 , 5/2−1 , and 7/2−2 states [Fig. 2(a)]

may be identified as forming a KP = 1/2− band.

The angular momenta in the negative parity ground

state band extend to the maximal angular momentum

J = 7/2 which can be constructed in the valence (0~ω)

space. The E2 transitions follow the characteristic tran-

sition pattern for a K = 1/2 band (Fig. 5). There is

modest positive Coriolis staggering (a ≈ 0.4). We shall

refer to this band, in the following discussion, as the

“negative parity ground state band”, in that it is built

on the ground state of the negative parity space, in

distinction to the “positive parity ground state band”,

built on the ground state of the positive parity space

(which becomes the overall ground state both in the

high Nmax calculations here and in experiment).

However, there are also enhanced E2 connections

from the negative parity ground state band to the 3/2−3
and 5/2−3 states. These states are themselves connected

by a strong E2 transition, comparable to the in-band

transitions, suggesting that these states could be de-

scribed as constituting a KP = 3/2− band, albeit a

very short one, which would spectroscopically be de-

scribed as a side band to the negative parity ground

state band.

Then, threading between these bands in energy

[Fig. 2(a)], is another KP = 3/2− band. This band

becomes yrast at J = 7/2, and then extends through

this maximal valence angular momentum with no no-

ticeable disruption to the rotational energies, finally ter-

minating at J = 13/2. In comparison with the “short”

negative parity ground state band (A ≈ 0.6 MeV), this

“long” band has energies which follow a line with a sig-

nificantly shallower slope (A ≈ 0.3 MeV). Between the

short band and the long band, there is thus an approxi-

mate doubling of the moment of inertia. The long band

does not have significant E2 connections to the short

bands.

Considerations of convergence are especially impor-

tant for the KP = 3/2− long band. The excitation
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Fig. 12 Calculated energies for rotational band members in 11Be, for (a) negative and (b) positive parity, shown as excitation
energies relative to the negative parity ground state. Rotational energy fits (2) or (3) are indicated by lines. The calculated
bands are for Nmax = 4 to 10 or Nmax = 5 to 11, respectively (smallest through largest symbols, and dotted through solid
curves).
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Fig. 13 Decompositions of representative 11Be negative parity rotational band members: (Left) The KP = 1/2− negative
parity ground state band’s (a) 1/2− band head and (b) 7/2− terminating state. (Right) The KP = 3/2− negative parity long
band’s (c) 3/2− band head and (d) 13/2− terminating state. Decompositions are calculated from wave functions obtained for
Nmax = 4 to 10 (dotted through solid curves).

energies of the negative parity band members at var-

ious Nmax are traced out in Fig. 12. The long band

starts at high excitation energy in the spectrum, at low

Nmax, but rapidly descends with increasing Nmax. For

instance, the 7/2− band member only becomes yrast

at Nmax = 8. The low final energy for the long band

in the present calculations with the Daejeon16 interac-

tion, at the highest Nmax considered here (Nmax = 10),

reflects the comparatively rapid convergence obtained

with the Daejeon16 interaction. In comparison, in cal-
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culations with the JISP16 or NNLOopt interactions, at

this same Nmax, the band head energy still lies well

above 10 MeV [15, 17, 32]. Without attempting any de-

tailed extrapolation here, we can observe that the cal-

culated energies of the long band members appear to

be converging towards those of a corresponding experi-

mentally identified excited rotational band [62, 63] (see

Refs. [32, 33] for further discussion of and comparison

with the experimental levels and rotational energy pa-

rameters).

Within the positive parity spectrum [Fig. 2(b)], the

yrast and near-yrast states can likewise be identified

as forming rotational bands, based on energies and en-

hanced E2 connections. The KP = 1/2+ positive parity

ground state band terminates at J = 9/2, and exhibits

large positive Coriolis staggering (a ≈ 1.9). (Note the

excellent agreement of the ab initio predicted excita-

tion energies within the band for the lowest three band

members with experimentally observed levels.) Next

lies an excited KP = 5/2+ band, which becomes yrast

at J = 11/2 and terminates at J = 13/2, the maximal

angular momentum accessible in the 1~ω space. The

moments of inertia of these bands differ (the slope pa-

rameter is A ≈ 0.4 MeV for the KP = 1/2+ band and

A ≈ 0.25 MeV for the KP = 5/2+ band).

There are some modestly enhanced E2 transistions

between these bands and to other low-lying states

(namely, 3/2+
2 and 5/2+

3 ). Most noticeable, though, is

the E2 transition pattern from the terminating 13/2+

state, which is at the maximal angular momentum ac-

cessible in the 1~ω space. Although the energy of this

state is roughly consistent with membership in the

KP = 5/2+ band, the strongest E2 transition is to

the KP = 1/2+ band, suggesting a breakdown of the

rotational strong coupling picture at high J (recall the

termination effects from Sec. 3.3).

4.2 Structure in oscillator space

The levels in the negative parity ground state band have

largest contributions coming from 0~ω oscillator config-

urations, as may be seen for representative band mem-

bers in Fig. 13(a,b). The members of the KP = 3/2−

side band have similar decompositions.

However, for the states constituting the KP = 3/2−

long band, a qualitatively different oscillator decom-

position is obtained [Fig. 13(c,d)]. While band mem-

bers with angular momenta above the maximal va-

lence angular momentum (J = 7/2) cannot receive any

contribution from 0~ω oscillator basis configurations

[Fig. 13(d)], even for those band members lying beneath

the maximum valence angular momentum the 0~ω con-

tribution is highly suppressed [Fig. 13(c)], as initially

noted in Ref. [33]. The largest contribution comes from

2~ω basis states, after which the probability distribu-

tion falls off gradually for higher Nex.

4.3 Angular momentum structure

The states making up the rotational bands in 11Be, like

those in 9Be, again follow comparatively simple pat-

terns when viewed in terms of an LS coupling scheme,

as indicated by their LS decompositions, as shown in

Fig. 14, or, again, more simply in terms of the evolution

of the effective L̄ and S̄ values as functions of J within

the band, as shown in Figs. 15 and 16. For all these

bands in 11Be, the predominant total spin S = 1/2

arises from the neutrons (Sn = 1/2), while the proton

spin vanishes (Sp = 0).

For theKP = 3/2− long band [Fig. 14 (middle)], the

angular momentum structure is comparatively straight-

forward. The J = 3/2, . . . , 13/2 band members have or-

bital angular momenta of predominantly L = 1, . . . , 6,

respectively. The simple linear growth in L with J may

be seen most clearly in Fig. 15(c). Thus, the orbital mo-

tion is consistent with a band built on an KL = 1 state

for intrinsic motion, which then combines with the total

spin S = 1/2 in aligned coupling to give J = L+ 1/2.

For the KP = 1/2− negative parity ground state

band and KP = 3/2− side band, if we simply exam-

ine the effective L̄ values [Fig. 15(a,b)], the pattern is

less obvious. However, from the detailed angular mo-

mentum decompositions [Fig. 14 (bottom,top)], it be-

comes clear that the contributing orbital angular mo-

menta are L = 1, 2, 3. The total set of angular mo-

menta (J = 1/2, 3/22, 5/22, 7/2) constituting the neg-

ative parity ground state band and its side band are

consistent with a single KL = 1 rotational band in

the orbital motion, with L = 1, 2, 3, combining with

the spin in antialigned (J = 1/2, 3/2, 5/2) and aligned

(J = 3/2, 5/2, 7/2) couplings. However, here there is

clearly much stronger mixing between the states of

same J but different L than in the two negative par-

ity bands in 9Be, for which the angular momentum

decompositions more cleanly indicate the aligned and

antialigned couplings of a single KL = 1 band with

S = 1/2.

Suggestively, the angular momentum structure for

these negative parity ground state and side bands is

again exactly as expected from a simple Elliott SU(3)

picture, as described by Millener [74]. For 11Be, the

leading irrep has (λ, µ) = (2, 1) and arises with S = 1/2.

By the SU(3) → SO(3) angular momentum branching

rule, this irrep indeed contains a single KL = 1 band

with L = 1, 2, 3, giving rise to K = 1/2 and 3/2 bands.
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Fig. 14 Orbital angular momentum decompositions of 11Be negative parity states: KP = 1/2− negative parity ground state

band members (1/2−
1 , 3/2−

1 , 5/2−
1 , and 7/2−

2 ) (bottom), KP = 3/2− long band members (3/2−
2 , 5/2−

2 , and 7/2−
1 ) (middle),

and KP = 3/2− side band members (3/2−
3 and 5/2−

3 ) (top). The crossed arrows indicate the change in energy ordering of
the first two bands between J = 5/2 and 7/2. Spin angular momentum decompositions are shown as insets. Based on wave
functions calculated for Nmax = 10.

For the positive parity ground state band (KP =

1/2+) [Fig. 16(a)], the orbital motion is described by

a KL = 0 band comprised of even angular momenta,

much as for the postive parity band of 9Be, but here

terminating at L = 4 (L = 0, 2, 4). These orbital an-

gular momenta again couple alternately in antialigned

and aligned couplings with the spin S = 1/2 to give

J = 1/2, . . . , 9/2.

Then, for the positive parity excited band (KP =

5/2+) [Fig. 16(b)], we now seem to find a KL = 2 or-

bital motion, with L = 2, 3, 4, 5, 6. These orbital an-

gular momenta combine in aligned coupling with the

spin (S = 1/2) to give J = 5/2, . . . , 13/2. (Ostensibly

a band arising from the antialigned coupling might be

found at higher excitation energy.)

Note that the spin structure (S = 1/2 from neu-

trons) found in the calculated rotational bands is again

consistent with alpha cluster molecular structure. In the

molecular description of 11Be, the proton spins are cou-

pled pairwise to zero, within alpha particles, as are the

spins of the neutrons within the alpha particles. The

total spin thus arises from the three valence neutrons,

and ostensibly just the last unpaired valence neutron.

It is then perhaps reassuring that organization of the

structure into rotational bands for the orbital motion,

with the KL values suggested by the present interpre-

tation of the ab initio calculations, is generally consis-

tent with the description obtained in antisymmetrized

molecular dynamics (AMD) calculations for 11Be, in

terms of cluster molecular orbitals (see Sec. 3.1.2 of

Ref. [83]). That is, the negative parity ground state

band (KP = 1/2−) is based on a π3 configuration, and

the long band (KP = 3/2−) is based on a πσ2 con-

figuration, consistent with KL = 1 from an unpaired

neutron in a π orbital. Then, the lowest positive par-

ity band (K = 1/2) in the AMD description is based

on a π2σ configuration, consistent with KL = 0 from

destructive addition of KL = ±1 contributions from

the two paired π orbitals (it is also natural to obtain
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Fig. 15 Effective values of angular momenta for 11Be neg-
ative parity rotational band members: (a) KP = 1/2− neg-
ative parity ground state band, (b) KP = 3/2− negative
parity side band, and (c) KP = 3/2− negative parity long
band. Based on wave functions calculated for Nmax = 4 to
10 (dotted through solid curves).

KL = 2, from constructive addition, as found here for

the KP = 5/2+ excited band).
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Fig. 16 Effective values of angular momenta for 11Be pos-
itive parity rotational band members: (a) KP = 1/2+ posi-
tive parity ground state band and (b) KP = 5/2+ positive
parity excited band. Based on wave functions calculated for
Nmax = 5 to 11 (dotted through solid curves).
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Fig. 17 Calculated energies for 7Be rotational band mem-
bers, shown as excitation energies relative to the negative par-
ity ground state. Rotational energy fits (3) are indicated by
lines. The calculated bands are for Nmax = 8 to 14 (smallest
through largest symbols, and dotted through solid curves).



17

7Be KP=1/21
-

7/2-

Nmax=8
Nmax=10
Nmax=12
Nmax=14

(a)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
il
it
y

7Be KP=1/22
-

7/2-
(b)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
ab
il
it
y

0 2 4 6 8 10 12 14

Nex

Fig. 18 Decompositions of representative 7Be negative par-
ity rotational band members: (a) the KP = 1/2− ground
state band’s 7/2− terminating state and (b) the KP = 1/2−

excited band’s 7/2− member. Decompositions are calculated
from wave functions obtained for Nmax = 8 to 14 (dotted
through solid curves).

5 7Be: Quadrupole excitation

5.1 Rotational spectrum and discussion

The rotational structure emerging in the ab initio cal-

culations for 7Be, as shown in Fig. 3, shares some of

the characteristics we have just explored for 9Be and
11Be. However, it also hints at the emergence of further

effective degrees of freedom. In particular, it demon-

strates the relevance of quadrupole degrees of freedom

and indicates a richer role for dynamical symmetry as

an organizing scheme for collective excitations.

The calculated negative parity spectrum (Fig. 3)

contains a KP = 1/2− ground state band, which ter-

minates at the maximal valence angular momentum

(J = 7/2) for 7Be. The staggering of energies in this

band is of the type obtained for a negative value of

the Coriolis decoupling parameter a (that is, the J =

1/2, 5/2, . . . members are raised and J = 3/2, 7/2, . . .

members lowered, contrary to the other K = 1/2 bands

discussed above). Indeed, this staggering is sufficiently

pronounced that the 3/2− band member becomes the

ground state, both in the calculations and in experi-

ment.

The 5/2− band member, which is staggered upwards

in energy, forms a close doublet with another, appar-
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Fig. 19 Effective values of orbital and spin angular mo-
menta (L̄, S̄p, S̄n, and S̄, as labeled) for 7Be rotational
band members: (a) KP = 1/2− ground state band and
(b) KP = 1/2− excited band. Based on wave functions cal-
culated for Nmax = 8 to 14 (dotted through solid curves).

ently non-rotational 5/2− state. As the calculated en-

ergies evolve with the basis truncation Nmax, the 5/2−

member of the ground state band begins slightly above

the non-rotational 5/2− state, in low-Nmax calculations,

and then ends up at lower energy, in high-Nmax calcula-

tions. The crossing occurs at Nmax = 10, at which point

the E2 strengths indicate significant two-state mixing.

Note that a close 5/2− doublet is observed experimen-

tally as well (Fig. 3). (With the exception of this 5/2−

band member, the calculated excitation energies within

the ground state band are seen to be essentially inde-

pendent of Nmax in Fig. 17.)

The calculated wave functions for the ground state

band members are predominantly 0~ω in character, as

illustrated for the terminating 7/2− band member in

Fig. 18(a). Moreover, inspection of the angular mo-

menta, in Fig. 19(a), indicates once again a straightfor-

ward angular momentum structure in the LS scheme.

The spin is predominantly S ≈ 1/2 (and arises from the

neutrons). The orbital angular momenta again form a
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stair-step pattern, as for the positive parity K = 1/2

band in 9Be (recall Fig. 11), but now with odd values

for L, namely, L = 1, 1, 3, 3, for the J = 1/2, . . . , 7/2

states, respectively. The angular momentum content of

the 5/2− band member is perturbed by two-state mix-

ing with the nearby non-rotational 5/2− state, which

has major contributions with Sp = 1 and S = 3/2, espe-

cially at their closest approach in energy (Nmax = 10).

Due to basic symmetry considerations, a K = 0

rotational band may contain either only even angu-

lar momenta or only odd angular momenta, depending

whether the intrinsic wave function takes on a positive

or negative sign (r = ±1), respectively, under a rota-

tion of π around an axis perpendicular to the symmetry

axis [54, 84]. Thus, the angular momentum structure

of the ground state band in 7Be is consistent with an

orbital motion described by a KL = 0, r = −1 rota-

tional band, containing odd values of angular momen-

tum (L = 1, 3), which then combine alternately in an-

tialigned and aligned coupling with the spin (S = 1/2)

to give successive band members.

Such a picture has, in fact, long been speculated

from a cluster molecular orbital description, in which
7Be may be viewed as two α particles plus a neutron

hole occupying a σ molecular orbital. See the discussion

(of the mirror nuclide 7Li) in Sec. 10 of Ref. [68], where

it is, in particular, suggested that the ground state 3/2−

and first excited 1/2− states are obtained from the

aligned and antialigned couplings, respectively, of the

same KL = 0, L = 1 motion to spin (S = 1/2). In the

limit of large cluster separations, this molecular orbital

description reduces to removal of a neutron from one

α to form an α-3He molecule (here it may be helpful

to refer to a molecular orbital diagram, as in Fig. 5 of

Ref. [78]).

If we now look beyond the maximal valence angular

momentum in Fig. 3, there is a puzzling feature to the

spectrum. One particular 9/2− state, slightly above the

yrast line, and the yrast 11/2− state have strong ∆J =

2 E2 transitions to the 5/2− and 7/2− ground state

band members, respectively. Indeed, these transitions

are comparable in strength to in-band transitions.

On one hand, such enhanced transitions could sug-

gest that these 9/2− and 11/2− states might be taken

as possible ground state band members, as discussed

in Refs. [14, 15, 17]. The calculated energies lie high

relative to what we would expect for J = 9/2 and

11/2 band members, based on the rotional energy for-

mula (3), but the excitation energies are not well con-

verged and are still decreasing with Nmax, so such a

comparison is ambiguous.

On the other hand, these 9/2− and 11/2− states

also have ∆J = 2 transitions, of comparable strength,

to specific higher-lying 5/2− and 7/2− states, respec-

tively. Indeed, in the present calculations, we can trace

out a complete excited KP = 1/2− band from the E2

strengths, terminating with these yrast 9/2− and 11/2−

states (Fig. 3).7 Thus, the transitions from these 9/2−

and 11/2− states to the ground state band members

are not in-band transitions, but rather highly enhanced

interband E2 transitions.

In a calculation at any given Nmax, such as the

Nmax = 14 calculation in Fig. 3, individual band

members, especially the upward-staggered states (J =

1/2, 5/2, 9/2), are subject to transient two-state mixing

with other “background” states, due to accidental de-

generacies in energy (see Sec. IV A of Ref. [15]). This

complication will tend to somewhat obscure any inves-

tigation of the properties of the band members, but the

basic features are apparent.

In particular, the excited band members, whether

above the maximal valence angular momentum or

below, have their largest contributions coming from

2~ω or higher oscillator contributions, as shown in

Fig. 18(b). At modest Nmax values, the decomposition

is sharply peaked at 2~ω, but the distribution becomes

much broader for the highest Nmax calculations, peak-

ing at 4~ω or even 6~ω contributions.

Then, the orbital angular momenta, in Fig. 19(b),

follow the same stair-step pattern as for the ground

state band, consistent with a KL = 0 rotational motion

restricted to odd L (r = −1), but now extending to

L = 5. (The upward-staggered J = 1/2, 5/2, 9/2 band

members, and the lower J band members in general, are

more subject to transient contamination of their angu-

lar momentum content from mixing at specific Nmax

values.)

Although transient mixing or fragmentation makes

it difficult to accurately track the convergence of the

excitation energies of the lower-J band members with

increasing Nmax, this convergence is indicated to the

extent possible in Fig. 17. At least superficially, the ex-

cited KP = 1/2− band in 7Be would seem to resemble

the long KP = 3/2− band in 11Be, which similarly

receives predominant contributions from 2~ω or higher

configurations and extends beyond the maximal valence

angular momentum (Sec. 4.1). The calculated excita-

tion energies for both bands move rapidly downward

7 A hint of the excited band structure may already be found
in Fig. 10 of Ref. [17], where enhanced transitions may be seen
from the yrast 9/2− and 11/2− states to high-lying 5/2− and
7/2− states. However, the calculations of Refs. [14–17] were
based on the less rapidly convergent JISP16 and NNLOopt

interactions, and only carried to Nmax = 10, so the excited
band members lay at higher excitation energy, obscured in a
region of higher level density, in these earlier calculations.
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with increasing Nmax [compare Fig. 12(a) for 11Be and

Fig. 17 for 7Be].

However, there are also notable differences in the

convergence properties. In particular, the long band in
11Be seems to be rapidly approaching a final, converged

excitation energy (with each successive step in Nmax,

the change in excitation energy is smaller by about

half). In contrast, the convergence pattern of the en-

ergies of the excited band in 7Be is still not clearly

defined.

5.2 Dynamical symmetry structure

To understand the relationship between the ground

state band and the excited band in the ab initio calcula-

tions for 7Be, and how this might hint at the emergence

of new effective theories, we turn to the sympletic group

Sp(3,R) in three dimensions [42, 43, 85]. This group

augments the generators of Elliott’s U(3), which all con-

serve the total number of oscillator quanta, with fur-

ther generators which physically represent the creation

and annihilation operators for giant monopole and

quadrupole resonances. These latter generators either

create or destroy two oscillator quanta and can there-

fore connect 0~ω and 2~ω states. The giant quadrupole

resonance operators in particular are naturally impli-

cated if 0~ω and 2~ω states are connected by strong

E2 transitions.

We are aided by calculations carried out in a

symplectic no-core configuration interaction (SpNCCI)

framework [51, 65, 86], which permits us to readily ob-

tain the symplectic symmetry decomposition of a cal-

culated wave function. In this approach, the nuclear

many-body basis is organized into irreps of the group

chain[
Sp(3,R)

σ
⊃ U(3)

ω
⊃ SO(3)

L

]
× SUS(2)

S

⊃ SUJ(2)
J

, (6)

with quantum numbers as shown, where σ ≡
Nσ,ex(λσ, µσ) and ω ≡ Nω,ex(λω, µω). It is then

straightforward to extract the decomposition of the cal-

culated wave functions not only with respect to the

Elliott U(3) quantum numbers Nω,ex(λω, µω), but the

Sp(3,R) quantum numbers Nσ,ex(λσ, µσ) as well. By

way of explanation, we simply note here that a sin-

gle Sp(3,R) irrep is obtained by starting from some

“lowest” U(3) irrep σ, i.e., having the lowest num-

ber of oscillator excitation quanta Nσ,ex within this

particular Sp(3,R) irrep. Then the Sp(3,R) irrep con-

sists of an infinite tower of U(3) irreps ω, i.e., with

Nω,ex = Nσ,ex, Nσ,ex + 2, . . ., obtained by laddering re-

peatedly with the giant resonance creation operators.

From calculations of 7Be in a more restricted space

(Nmax = 6), described in Refs. [51, 52], the U(3) struc-

ture of the bands becomes clear. The ground state band

members are identified with the 0~ω SU(3) irrep (3, 0),

with S = 1/2, while the excited band members are

identified with the 2~ω SU(3) irrep (5, 0), again with

S = 1/2. The SU(3) → SO(3) angular momentum

branching rule indeed yields that a (3, 0) irrep is com-

prised of a single KL = 0 band with L = 1, 3, while

a (5, 0) irrep is comprised of a single KL = 0 band

with L = 1, 3, 5. Thus, the Nex and angular momen-

tum structure detailed above for the rotational bands

follows simply from an Elliott effective description.

Yet, it is also found that the U(3) irrep describ-

ing the excited band has a particular symplectic struc-

ture. The U(3) and spin quantum numbers ωS ≡
Nω,ex(λω, µω)S = 2(5, 0)1/2 are far from unique in

the space for 7Be, comprising a subspace of dimen-

sion 12. One (and only one) particular linear combi-

nation within this 12-dimensional space yields the U(3)

irrep which is a member of the σS = Nσ,ex(λσ, µσ)S =

0(3, 0)1/2 symplectic irrep, that is, the symplectic irrep

built on the ground state band’s U(3) irrep by ladder-

ing with the giant resonance operators. And it turns

out that the calculated excited band members lie within

this symplectic irrep, at the level of ∼ 50%–80% of their

norm.

Thus, the ground state and excited bands would

seem to represent an example of approximate

Sp(3,R) ⊃ U(3) dynamical symmetry. The strong in-

terband E2 transitions reflect their connection by the

giant quadrupole operator, which, as a generator of

Sp(3,R), acts entirely within an Sp(3,R) irrep.

The dynamical symmetry relationship between the

bands is suggestive of an emerging physical structure.

In the contraction limit, obtained for large values of the

quantum numbers, the microscopic symplectic picture

gives way to a collective interpretation of the dynamics

in terms of effective coupled rotational and vibrational

(giant resonance) degrees of freedom [43, 44, 87, 88].

In such an extremely light and minimally bound nu-

cleus as 7Be, the physical interpretation is less clear.

The contraction limit, essentially a semiclassical inter-

pretation, is likely not well realized, and, when working

within a bound state formalism as we are here, possible

interactions with the scattering continuum could alter

the interpretation of computed states. Nonetheless, at

the very least, the emergence of rotational bands con-

nected by quadrupole excitations in a symplectic dy-

namical symmetry scheme in these ab initio calcula-

tions may be taken as a possible harbinger of emergent

rotational-vibrational structure in heavier and more

strongly bound systems.
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6 Conclusion

Microscopic ab initio theory offers the potential of pre-

dictive power, by addressing the nuclear many-body

problem in its full glory, without presupposing mean-

field structure, collective degrees of freedom, or many-

body dynamical symmetries. It may therefore not be

immediately obvious how to extract, from the results of

such large-scale calculations, a physically intuitive un-

derstanding of the nucleus, of the kind afforded by mod-

els defined in terms of effective degrees of freedom. As

has been said in the (slightly different) context of large-

scale shell model calculations, “even if such calculations

are possible using high-speed computers, the results are

difficult to interpret physically and the consquences of

agreement or disagreement with the data are much less

intuitively informative. . . nor could one even begin to

understand the resultant wave functions” [4].

Yet, ab initio theory has advanced to the point

where the resulting calculated spectra do exhibit signa-

tures of such emergent phenomena, including rotational

features substantially resembling those observed in ex-

periment. We see this in the present examples taken

from the odd-mass Be isotopes (Figs. 1–3).

On one hand, most obviously, the calculated spectra

may be taken in the spirit of a numerical experiment,

permitting access to a rich set of observables in these

nuclei, such as E2 strengths [89–92], which would oth-

erwise be largely inaccessible due to experimental limi-

tations. The traditional phenomenological analyis then

takes over, starting from the computed “data”, permit-

ting the identification of emergent structural features.

This is how collective features in the spectrum, such as

rotational bands, are first identified.

On the other hand, the mere fact that the computed

wave functions are “large” in an ab initio approach

(for NCCI calculations, say, comprised of amplitudes

for . 1010 basis configurations) is in itself not an insur-

mountable impediment to discerning simple structure

within these wave functions. The same large-scale com-

putational tools which are used to generate the wave

functions are also available to assist in their judicious

analysis.

We have focused here on simple shell structure,

which is hinted at by decompositions in oscillator space

and band termination phenomena, and on simple an-

gular momentum structure, which is apparent from LS

decompositions [21]. These basic observations are con-

sistent with and suggestive of a more complete under-

standing in terms of a richer structure of Elliott SU(3)

and symplectic dynamical symmetries, as indicated

both by the spectroscopy and by group theoretical de-

compositions of the wave functions [45–49, 51, 52, 65].

A complementary understanding [93] likely comes in

terms of cluster molecular structure [9, 83]. For these

light nuclei, where only a handful of lowest-energy

states are truly bound, a more complete understanding

requires going beyond a bound-state formalism towards

approaches which can more directly identify clustering

degrees of freedom underlying resonances [94, 95].

From these observations, we have provided some in-

sight into the links between microscopic theory and

emergent effective degrees of freedom, by recognizing

basic structures and patterns in the ab initio results.

The analyses presented here are essentially simple, fo-

cusing on spectroscopy and a few basic decompositions

of the wave functions, but they already indicate the

emergence of mean field structure, LS or intermediate-

coupling rotation, and a nascent giant quadrupole de-

gree of freedom.
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